a2 United States Patent
Chan et al.

US009058290B2

US 9,058,290 B2
*Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MEMORY PROTECTION CACHE

(71) Applicant: SK hynix memory solutions inc., San
Jose, CA (US)

(72) Inventors: Ka Hou Chan, Macau (MO); Kwok W.
Yeung, Milpitas, CA (US)

(73) Assignee: SK hynix memory solutions inc., San
Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/263,440

(22) Filed: Apr. 28, 2014
(65) Prior Publication Data
US 2014/0325313 Al Oct. 30, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/273,047, filed on
Oct. 13, 2011, now Pat. No. 8,719,664.

(60) Provisional application No. 61/474,686, filed on Apr.

12, 2011.
(51) Int.CL
G11C 29/00 (2006.01)
GO6F 11/10 (2006.01)
GI1IC 29/04 (2006.01)
Address space at the master
502—\

(52) US.CL
CPC GO6F 11/1076 (2013.01); G11C 2029/0411
(2013.01); GOGF 11/1048 (2013.01)
(58) Field of Classification Search

CPC GOGF 11/1048; GOGF 11/1076; G11C
2029/0411
USPC i 714/766;711/103

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0161554 Al* 6/2011 Selinger etal. . .. 711/103
2011/0213945 Al* 9/2011 Postetal. 711173
2012/0117305 Al* 52012 Arya 711/103
2013/0080730 Al* 3/2013 Kim ...coooovviviiiviiiinnn 711/203

* cited by examiner

Primary Examiner — Sam Rizk
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Accessing data at a memory is described. A request associ-
ated with a read or write operation is received, wherein the
request includes a logical address associated with the
memory. A physical address is generated based at least in part
on the logical address. A block of data at the memory that
includes data associated with the physical address is deter-
mined. Data at the determined block of data and a correspond-
ing set of ECC from the memory are accessed. Whether the
accessed data can be decoded based at least in part on the
corresponding set of ECC is determined.

17 Claims, 14 Drawing Sheets

1200\‘

1202

Receive error status

Determine a block of data associated with the |~ 1204
error status

i

Address remapping

Cache Access Region

No address remapping
Direct Access Region

External memory l

Send a read request associated with the 1206
determined block of data associated with the [~
error status

Process data and a correspending set of ECC
returned based at least in part on the
determined block of data associated with the

1208

error status

|

Send a write request associated with the 1210
processed data for writing the processed data L
to memory

U.S. Patent Jun. 16, 2015 Sheet 1 of 14 US 9,058,290 B2

102
Master e

1 System bus
- P

!

External memory 104
interface -

I

106
External memory "

FIG. 1A

U.S. Patent Jun. 16, 2015 Sheet 2 of 14 US 9,058,290 B2

150 ~
Master |~ 102
I System bus
Cache |~ 104

!

External memory 105
interface -
_~ 106

External memory

FIG. 1B

U.S. Patent Jun. 16, 2015 Sheet 3 of 14 US 9,058,290 B2

202
Master +

System bus

204
N\l Local memory |« DMA engine |~ 208

!

External memory - 208
interface

1

210
External memory

FIG. 2

U.S. Patent Jun. 16, 2015 Sheet 4 of 14 US 9,058,290 B2

2
Master 30

System bus

Memory protection -~ 304
cache

1

External memory |~ 306
interface

1

308
External memory "

FIG. 3

U.S. Patent Jun. 16, 2015 Sheet 5 of 14 US 9,058,290 B2

308 N External memory

56 | 57 | 58 | 59 | 60
50 [51 52 | 53 | 54

48 | 49 | 50 51 52
43 | 44 | 45 | 46 | 47

40 | 41 42 | 43

36 | 37 | 38
32 | 33 | 34 37 | 38 | 39
29 | 30 | 32 | 33 | 34 | 35

28 | 28 | 30 | 31
25 | 26 | 27 | 28

20 21 22 23
18 19 20 21

9 12 13 14 15
8 11 12 13 14
Physical address —» 0 1 2 3 4 5 6 7
Logical address —»| 0O 1 2 3 4 5 6 7
402/

aset of ECC

FIG. 4

US 9,058,290 B2

Sheet 6 of 14

Jun. 16, 2015

U.S. Patent

Ajowaw {BuisixXg

¢

G 'Old

<

Buiddewa. ssaippe ON

uoibay $5900Y 108.41Q

Buiddewsa. ssaippy

uoibay ssa00y ayoen

*~ c0s

Joisew ayj je eords SSaIppy

U.S. Patent Jun. 16, 2015

Start

A4

Sheet 7 of 14

US 9,058,290 B2

Receive a request associated with a read or
write operation, wherein the request includes
a logical address associated with the memory

- 602

v

part on the logical address

Generate a physical address based at least in

\ 4

address

Determine a block of data at the memory that
includes data associated with the physical

|- 606

A 4

Access data at the determined block of data

and a corresponding set of ECC from the
memory

|~ 608

610

Uncorrectable?

No
v

614
Completion of the request

FIG. 6

612

/

Send uncorrectable
error status

U.S. Patent Jun. 16, 2015 Sheet 8 of 14 US 9,058,290 B2

The accessed data has no error or is 702
error correctable with the ECC

|

Store the accessed data at a corresponding -~ 704
block in cache

l

Return a portion of the accessed data Ve 706
associated with the request

End

FIG. 7

U.S. Patent Jun. 16, 2015 Sheet 9 of 14 US 9,058,290 B2

No error or accessed data is error 802
correctable with the ECC

l

Store the accessed data at a corresponding |~ 804
block in cache

l

Update the accessed data stored at the
corresponding block in the cache based at
least in part on the requested data

l

Indicate that the updated block of data at the L~ 808
cache is dirty

End

FIG. 8

U.S. Patent

Jun. 16, 2015 Sheet 10 of 14

US 9,058,290 B2

902
A condition for eviction is met

y

Select a block of data at the cache based at
least in part on a replacement policy

|- 904

908

/

906 Invalidate the selected

No—p]

block of data

Yes

v

Determine a corresponding location at the
memory associated with the selected block of
data

|~ 910

\ 4

Generate a new set of ECC corresponding to
the selected block of data

'

Write back the data associated with the block

of data and also the new set of ECC from the

cache based at least in part on the determined
corresponding location at the memory

End

FIG. 9

U.S. Patent Jun. 16, 2015 Sheet 11 of 14 US 9,058,290 B2

External memory

56 | 57 | 58 | 59 | 60 | ©61
50 | 51 52 53 | 54

48 | 49 | 50 | 51 52

43 | 44 | 45 46 47 48 | 49
40 | 41 42 43 46 | 47
36 37 39 40 | 41 42

Physical address —>.
Logical address —»{ 0

External memory

= a set of ECC

= requested data

= accessed data/ECC

FIG. 10

U.S. Patent Jun. 16, 2015

Sheet 12 of 14 US 9,058,290 B2

308
\‘ External memory

56 57 58 59 60 61

50 51 52 53 54

48 49 50 51 52 55
43 44 45 | 46 47 48 49
40 41 42 | 43 46 | 47
36 37 38 39 41 42
32 33 34 38 39

31

Physical address —»
Logical address —p

a set of ECC

= requested data

= accessed data/ECC

External memory

FIG. 11

U.S. Patent

Jun. 16, 2015 Sheet 13 of 14

US 9,058,290 B2

1202

Receive error status

|

Determine a block of data associated with the
error status

A

Send a read request associated with the
determined block of data associated with the
error status

_~1206

:

Process data and a corresponding set of ECC
returned based at least in part on the
determined block of data associated with the
error status

l

Send a write request associated with the
processed data for writing the processed data
to memory

End

FIG. 12

U.S. Patent Jun. 16, 2015 Sheet 14 of 14 US 9,058,290 B2

1302
Gmr status is seD/

Receive a read request associated with a 1304
determined block of data associated with the
error status

l

Access data associated with the read request

including data associated with the determined .

block of data at the memory and also a set of
ECC corresponding to the data block

l

Return the data associated with the 1308
determined block of data and the
corresponding set of ECC

1306

End

FIG. 13

US 9,058,290 B2

1
MEMORY PROTECTION CACHE

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/273,047, entitled MEMORY
PROTECTION CACHE filed Oct. 13, 2011 which is incor-
porated herein by reference for all purposes, which claims
priority to U.S. Provisional Patent Application No. 61/474,
686 entitled MEMORY PROTECTION CACHE filed Apr.
12, 2011 which is incorporated herein by reference for all
purposes.

BACKGROUND OF THE INVENTION

Microprocessors sometimes need to access an external
memory for data, which may be slow compared to accessing
a local memory. As a result, some systems have a local cache
memory for storing recently used data. However, current
cache memory schemes have a variety of drawbacks, particu-
larly with respect to error detection and correction. Therefore,
it would be desirable to create a more efficient error detection
and correction scheme with respect to memory and one that
does not require significant changes to memory interface bus
architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1A is a diagram showing an example of a system of
memory access.

FIG. 1B shows an example of a system where cache 105 is
added between master 102 and external memory interface
104.

FIG. 2 is a diagram showing an example of a system of
memory access with a DMA engine.

FIG. 3 is a diagram that shows an embodiment of a system
for memory access with a memory protection cache.

FIG. 4 is an example of external memory with ECC
inserted among the data.

FIG. 5 is an example of different regions at the address
space of the master.

FIG. 6 is a flow diagram showing an embodiment of a
process of memory access.

FIG. 7 is a flow diagram showing an embodiment of a
process for reading data from memory.

FIG. 8 is a flow diagram showing an embodiment of a
process for writing data to memory.

FIG. 9 is a flow diagram of a process for performing evic-
tion at the cache.

FIG. 10 shows an example in which a word of data at
logical address 8 was requested.

FIG. 11 shows an example in which words of data at logical
addresses 15 and 16 were requested.

FIG. 12 is a flow diagram showing an example of a process
for handling an error from the memory protection cache.

FIG. 13 is a flow diagram showing an embodiment of a
process for handling an error.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-

40

45

55

2

puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1A is a diagram showing an example of a system of
memory access. As shown in FIG. 1A, master 102 (e.g., a
microprocessor) sometimes needs to access external memory
106 (as opposed to a local memory) via external memory
interface 104 for data that it has been requested to process
(e.g., by a software application). For example, master 102 can
fetch and execute instructions from external memory 106,
read and process data from external memory 106, and also
write new data to external memory 106.

Often, the access time at a main memory such as external
memory 106 is slow compared to the speed of a master such
as master 102. Furthermore, the main memory may also have
long access latencies. So the difference in speeds between the
master and the main memory could significantly decrease the
performance of the system. To mitigate this problem, some
systems have added a cache between the master and the main
memory. Typically, the cache has a faster access time than the
main memory and so is used to store recently used data. FI1G.
1B shows an example of a system where cache 104 is added
between master 102 and external memory interface 105.

Even though it would be desirable to access data from
systems such as 150 of FIG. 1B with minimum error, memory
such as Dynamic Random Access Memory (DRAM) is prone
to error. For example, the cells of the memory can be affected
by alpha particles, which can corrupt the data and introduce
soft error. Also, for example, there could be physical defects
inside the memory that cannot be fixed, which is a form of
hard error. In another example, the main memory module may
be located off-chip and as a result, signal integrity and noise
issues can arise with respect to the memory interface when
data is transferred. To reduce error, a memory protection
scheme that detects and corrects any error during the transfer
of data from and to the memory can be used.

In some systems, error correction code (ECC) or parity bits
are added for each accessible size of data to avoid extra
read-modify-writes. However, a caveat in this technique is

US 9,058,290 B2

3

that it requires increasing the memory interface data bus
width. For example, if the master were a microprocessor,
assume that the microprocessor reads and writes to the
memory with a single 8-bit, 16-bit, or 32-bit transfer or mul-
tiples of 32-bit bursts. In this example, the smallest accessible
size of data is 8 bits. One extra parity bit could be generated
for each 8-bit data and the parity bits are typically stored
together with their corresponding data in the memory. How-
ever, typically, the additional parity bits are stored together
with their corresponding data in the memory in a manner that
would change the architecture of the bus interface. For
example, if the original memory bus interface is 32 bits wide,
then adding parity bits to the memory in this case would
require changing the memory interface from 32-bits to
36-bits (i.e., one parity bit is added for each 8 bits of data).
Note that a 1-bit parity scheme can only provide 1-bit detec-
tion capability. In order to support multiple bits of error
detection and correction, more parity bits are needed for each
8 bits of data. For example, to provide 2-bit error detection
and 1-bit error correction for 8 bits of data, a 5-bit parity
would be needed for each 8 bits of data, which would signifi-
cantly increase the memory interface data bus width. These
kinds of changes in data bus architecture are often not pre-
ferred. Furthermore, the memory may not support the new
bus width. Certain types of memory may only support certain
fixed width configurations such as 16-bits or 32-bits. More-
over, there is large memory storage overhead for storing these
extra parity bits. In this example, the memory storage over-
head for the parity bits is 62.5% (i.e., the ratio of 5 bits of
parity for every 8 bits of data yields 62.5%).

In another approach, extra parity bits are stored in locations
in memory that are different than the locations at which the
corresponding data is stored. In this case, the microprocessor,
for example, would need to generate extra accesses to read the
parity to check for error, and also extra write accesses to
update the parity bits for each user data write. While this
approach does not require changes to the architecture of the
memory interface bus width, it could complicate the micro-
processor’s access sequences. Complicating the micropro-
cessor’s access sequences could decrease the system’s per-
formance because extra accesses to memory are needed.
Also, the original software code executed by the micropro-
cessor may also need to be changed in order to generate the
new parity accesses and to check for error.

A cache scheme that includes adding an error correction
code that protects each block of data in memory and permits
two types of accesses to data in memory is disclosed. In some
embodiments, a first type of access to data made via a Cache
Access Region remaps the logical address of the request into
aphysical address that is used to access the data and a second
type of access to data made via a Direct Access Region does
not remap the logical address but rather uses the logical
address as the physical address to access the data. In some
embodiments, data at memory is accessed in relatively small
sizes and the requestor for data from the memory does not
need to wait for an interrupt per completion of data transfer.

FIG. 2 is a diagram showing an example of a system of
memory access with a DMA engine. In system 200, master
202 accesses data at external memory 210 through interacting
with DMA engine 206 and local memory 204. Examples of
master 202 can include a microprocessor, digital signal pro-
cessor, a sequencer, or state machine. Examples of external
memory 210 can include double data rate synchronous
dynamic random access memory (DDR SDRAM), synchro-
nous dynamic random access memory (SDRAM), or static
random access memory (SRAM). Local memory 204 can
provide the functionalities of a cache.

30

40

45

4

Master 202 could receive an instruction (e.g., from a soft-
ware application) to access data at external memory 210.
Master 202 then executes code (e.g., firmware) to perform
either a read or write operation at external memory 210 based
onthe instruction. The firmware would program DMA engine
206 with the parameters of the read or write operation. Such
parameters can include a read command (if the operation
were a read operation) that instructs DMA engine 206 to
transfer data from external memory 210 to local memory 204,
awrite command (if the operation were a write operation) that
instructs DMA engine 206 to transfer data from external
memory 210 to local memory 204, source starting address,
destination starting address, and the size of the data to be
accessed, for example. After master 202 programs DMA
engine 206 with parameters, DMA engine 206 performs the
data access based on the given parameters. Once DM A engine
206 completes the data access, DMA engine 206 sends an
interrupt to master 202 to indicate such completion. If the
operation were a read operation, master 202 would need to
read the requested data from local memory 204, where it was
written by DMA engine 206. As master 202 waits for the
interrupt, it could perform other functions while the data
access is being handled by DMA engine 206.

As shown in the example, in the system of memory access
that includes master 202 interacting with DMA engine 206,
master 202 is required to expend resources to provide fairly
specific parameters to DMA engine 206 such as the size of the
data to access, at which starting address to find the data, at
which destination address to find the data, and how the data is
arranged at external memory 210 (e.g., whether ECC is
included at external memory 210 and if so, in which manner).
Furthermore, DMA engine 206 is typically suitable for trans-
ferring large blocks of data. This is because DMA engine 206
uses an interrupt to signal to master 202 that it has completed
the transfer of data; the use of an interrupt is associated with
high overhead, which is why it is more worthwhile to use
DMA engine 206 for the transfer of bigger blocks of data.
Therefore, system 200 suffers from requiring master 202 to
execute more complicated firmware code and is also less
appropriate to access small blocks of data for the reasons
discussed above.

FIG. 3 is a diagram that shows an embodiment of a system
for memory access with a memory protection cache. In sys-
tem 300, master 302 accesses data at external memory 308
through interacting with memory protection cache 304.
Examples of master 302 can include a microprocessor, digital
signal processor, a sequencer, or state machine. Examples of
external memory 308 can include double data rate synchro-
nous dynamic random access memory (DDR SDRAM), syn-
chronous dynamic random access memory (SDRAM), or
static random access memory (SRAM).

Memory protection cache 304 is a logic block that can be
implemented with one or more of hardware and software. In
various embodiments, memory protection cache 304 includes
local memory of which at least a portion can be implemented
as a cache. Memory protection cache 304 is configured to
facilitate master 302 access to data at external memory 308 by
requiring minimal instruction (e.g., from the firmware asso-
ciated with) from master 302. In various embodiments, in a
memory access system with a memory protection cache such
as memory protection cache 304, master 302 can provide
memory protection cache 304 with a request (e.g., a read or
write operation) for data at a particular logical address at
external memory 308 and memory protection cache 304 can
then perform the request with respect to external memory 308
without requiring master 302 to program parameters associ-
ated with the request at, for example, a DMA engine. In

US 9,058,290 B2

5

various embodiments, in response to a request (e.g., a logical
address at which the desired data is located at external
memory 308) for data from master 302, memory protection
cache 304 returns the data to master 302 without requiring
master 302 itself to actively read the data, for example, from
a local memory.

In some embodiments, in system 300, external memory
308 includes ECC that is arranged next/sequential to its cor-
responding block of data. In various embodiments, at least a
portion of data at external memory 308 is stored in blocks of
a predetermined size. In various embodiments, memory pro-
tection cache 304 accesses data at external memory 308 at the
minimum unit of a predetermined block size. In some
embodiments, the predetermined size of the data blocks is
larger than the smallest accessible size of data at external
memory 308. For example, the predetermined size of each
data block can be a cache line and for each cache line of data,
a corresponding set of ECC (i.e., ECC that is configured to
protect that particular cache line) is stored at a physical
address at external memory 308 that is in sequence with a
starting or ending physical address of the data it is configured
to protect. One benefit in adding ECC in sequence with its
corresponding data is that the external memory interface bus
does not need to be changed. In some embodiments, the ECC
that is added among the data at external memory 308 is not
seen by master 302 when it requests data at external memory
308 during normal operation (i.e., when master 302 requests
data via the Cache Access Region, as discussed below). The
addition of ECC in sequence with corresponding data shifts
the physical addresses of the data (because the ECC is
inserted between blocks of data such that each block of data is
separated by a set of ECC), but master 302 still sees a con-
tinual logical address space of the data (i.e., master 302 can-
not see the ECC) when it accesses data via the Cache Access
Region; to enable this, memory protection cache 304 remaps
a logical address associated with data that is requested by
master 302 via the Cache Access Region to the physical
address ofthe data in the event the physical address of the data
is not the same as the logical address due to the addition of
ECC among the data.

In various embodiments, using memory protection cache
304, master 302 does not need to be aware and/or have aware-
ness of the manner in which data and/or ECC is arranged at
external memory 308. In some embodiments, as discussed
further below, master 302 has at least two different address
spaces (for enabling two different types of accesses) for
accessing data at external memory 308; the first address space
is referred to herein as the Cache Access Region and the
second address space is referred to herein as the Direct Access
Region. A difference in requesting data via the Cache Access
Region or the Direct Access Region is the following: when
data at a logical address is requested via the Cache Access
Region, memory protection cache 304 first performs a remap-
ping of the requested logical address to a physical address to
which the data at the requested logical address is actually
located as a result of the disclosed insertion of ECC; whereas
when data at a logical address is requested via the Direct
Access Region, memory protection cache 304 does not per-
form a remapping of the logical address and instead uses the
logical address as the physical address at which to access
data.

Asaresultofa request by master 302 for data via the Cache
Access Region, memory protection cache 304 accesses data
and its corresponding ECC at external memory 308 and
checks the data for the presence of a correctable error using
the corresponding ECC, while the presence of the ECC is
transparent to master 302. Put another way, when master 302

20

30

40

45

55

6

requests data via the Cache Access Region, it can send a
logical address associated with the request to memory pro-
tection cache 304 without knowledge of the presence and/or
use of ECC at external memory 308. If there is no error in the
accessed data or if the error is correctable, then the requested
portion of the accessed data is stored in the cache of memory
protection cache 304 (e.g., when the cache of the local
memory of memory protection cache 304 is enabled). Next, if
the request were a read operation, then the requested portion
of the accessed data is returned from cache to master 302.
Otherwise, if the request were a write operation, then the data
associated with the request is used to update at least a portion
of the accessed data that is stored in cache. At some point, a
new ECC corresponding to the updated data is generated and
both the updated data in cache (which is marked as “dirty”)
and the new ECC are written back to a corresponding address
in external memory 308. In short, by requesting data via the
Cache Access Region in system 300, master 302 is able to
efficiently perform a data request at external memory 308
with the benefit of ECC protection at external memory 308
without the need to program specific parameters into a DMA
engine or the need to wait for an interrupt when the data
transfer is complete, as would have been needed for a differ-
ent system such as system 200.

In comparison, as a result of a request by master 302 for
data via the Direct Access Region, memory protection cache
304 accesses data and any corresponding ECC that is associ-
ated with the requested address at external memory 308 and
returns the data and the ECC, if any. In some embodiments,
the data and/or ECC is returned to master 302. In some
embodiments, the data and/or ECC is returned to an entity
other than master 302 (e.g., a debugging program that made
the request). In one example, the debugging program can be
part of a firmware program that executes at master 302 or is
part of a special configuration that is executed by master 302.
Master 302 may execute the testing code or is configured to be
in a debug mode for debugging purposes. In some embodi-
ments, because the data was accessed via the Direct Access
Region, it is not cached nor checked for error. One purpose of
the Direct Access Region is that it can be used to access and
return data and even ECC directly from external memory 308
so that the data and/or ECC can be analyzed, for example,
when a special condition (e.g., that indicates an abnormal
operation) arises. For example, a special condition can be if in
aprevious access to data via a Cache Access Region, memory
protection cache 304 determined that the accessed data has
uncorrectable error. In this example, the same data and its
corresponding ECC that caused the error uncorrectable status
to arise can be accessed via the Direct Access Region so that
the data can be processed and corrected. In short, with the
availability to access and receive both data and ECC via the
Direct Access Region, both the data and ECC at external
memory 308 can be examined outside of the normal operation
of reading and writing data to external memory 308.

FIG. 4 is an example of external memory with ECC
inserted among the data. In some embodiments, the example
of FIG. 4 can be used to implement external memory 308 of
system 300. As shown in the example, the ECC is inserted in
between blocks of data. In some embodiments, at the external
memory, each set of ECC is configured to protect a block of
datathat is of a predetermined size. In some embodiments, the
size of the block of data can be predetermined by a system
administrator. In some embodiments, the size of the block of
data is predetermined to be larger than the size of the smallest
unit of accessible data because it is more efficient (in terms of
how much ECC is needed to be added to the external memory
in proportion to the amount of protected data) to protect an

US 9,058,290 B2

7

entire block of data using one set of ECC rather than to protect
the smallest unit of accessible data with one set of ECC.
Assume, for example, that if the smallest accessible size were
8 bits of user data, 5 bits of ECC are used to protect it. And
also assume, for example, that if the block of data were
chosen to be 8x32 bits, then 32 bits of ECC are chosen to
protect it. In this example, the ratio of ECC bits to user data is
much bigger for the case of 8 bits of user data and 5 bits of
ECC, meaning there would be less space available for user
data at the memory if the ECC were used to protect data for
each 8 bits of data (if 8 bits of data were the smallest acces-
sible size of data).

In some embodiments, when data at the external memory is
requested via the Cache Access Region, only entire blocks of
data (rather than portions of blocks of data) and their corre-
sponding set of ECC can be read from the external memory.
The entire blocks of data are checked for correctable error and
corrected with ECC, if applicable, and then stored in the
cache (when it is enabled) of the memory protection cache.
Once stored in cache, the portions of the data in the entire
blocks of data that are relevant to the request are used to
complete the request (e.g., if the request were a read opera-
tion, then the relevant portions of data would be returned to
the master and if the request were a write operation, then the
relevant portions of data would be updated with the new data
of the request).

In the example of FIG. 4, each block of data is a cache line
that consists of eight sequential 32-bit words of data (it can be
assumed that in the example, the size of the smallest unit of
accessible data is 32-bits). In the example, each 32-bit word
of'data is represented by a rectangle such as rectangle 402; so
a cache line comprises eight sequential rectangles. In the
example, a set of ECC that corresponds to a cache line of data
(i.e., the cache line of data that the set of ECC is configured to
protect) also comprises a 32-bit word of data. So, in this
example, the ratio of ECC to corresponding data is 1/8, which
makes the memory overhead of this example 12.5%. While in
this example, the size of the set of the ECC is equal to the size
ofeach word of data in a block of data, the size of the ECC can
be any size that is chosen (e.g., based on the desired degree of
error correction). As shown in the example, a word of (non-
ECC) data at the external memory can be identified by both a
physical address and a logical address while each set of ECC
is identified by only a physical address. Each block of data can
be identified, for example, by the start and/or end logical/
physical addresses associated with that block or the set of data
that encompasses the data over a range of logical/physical
addresses.

In some embodiments, the size of the block of data can be
predetermined (e.g., by a system administrator) to be a power
of two. By selecting a block size that is a power of two and
using one extra word of data for the corresponding set of
ECC, for a request via the Cache Access Region, the logical
address of the master’s request can be easily remapped to the
physical address. For example, the remapping can be accom-
plished using one adder in hardware. In the example, the
cache line size is 8x32-bits, 1x32-bits of ECC are used per
cache line, and the ECC is stored sequential to the protected
cache line. Given that the ECC is stored sequential to the
protected cache line in this example, the address remapping
can be determined by the following formula, for example:

Physical Address=Logical Address+[(Logical

Address)/8] M

For example, to implement “(Logical Address)/8,” the
Logical Address bits can be shifted to the right by 3 bits (e.g.,
using a fixed 3-bit right-shift operation in hardware). How-

10

15

20

25

30

35

40

45

50

55

60

65

8

ever, in some embodiments where the ECC is not stored
sequential/next to the protected block of data, then an equa-
tion other than equation (1) may be used to implement the
address remapping.

Invarious embodiments, the set of ECC that corresponds to
ablockofdata (e.g., acache line of data) is stored at a physical
address that is sequential/next to (a word of data that is
included in) that block of data. In the example, a set of ECC
is shown to be sequential/next to the corresponding block of
data. For instance, the set of ECC corresponding to the cache
line block of data that includes words of data at the range of
physical addresses of 0 to 7 is located at physical address 8.
So, if at least a portion of the block of data that encompasses
the data at the physical addresses from O through 7 is
requested, then that block of data along with the correspond-
ing set of ECC at physical address 8 would be accessed by the
memory protection cache.

In some embodiments, the set of ECC that corresponds to
ablock of data does not need to be stored at a physical address
that is sequential/next to that block of data. However, an
advantage to storing the set of ECC next to the corresponding
block of data is that it permits retrieval of or writing of data at
that block and the corresponding set of ECC to be done in a
single access/burst request to the external memory (as
opposed to a set of ECC that is not stored sequential/next to
the block of data, which would cause more than one access/
burst request to the external memory). In this example, a *“/”
indicates an ECC word, which is not accessible by a logical
address, e.g., via the Cache Access Region.

FIG. 5 is an example of different regions at the address
space of the master. In the example of FIG. 5, multiple regions
can be defined at the address space of the master. In some
embodiments, master 302 of system 300 can use an address
space such as address space 502. In the example, two regions
are shown: 1) the Cache Access Region and 2) the Direct
Access Region. Both the Cache and Direct Access Regions
can be used to access the external memory but each has
different properties. As mentioned above, if the master
accesses the external memory through the Cache Access
Region, then the requested logical address is remapped into a
physical address. The block(s) of data associated with the
physical address and the corresponding set(s) of ECC are read
from the external memory, checked for error using the corre-
sponding set(s) of ECC, and stored into the cache of the
memory protection cache. Also as mentioned above, if the
master accesses the external memory through the Direct
Access Region, then the requested logical address is not
remapped, and instead the same logical address is used as the
physical address. The block(s) of data associated with the
physical address and the corresponding set(s) of ECC are
returned to the master (or other logic block/process) for fur-
ther handling but not necessarily stored in cache or checked
for error.

In some embodiments, an alias space is defined for the
Direct Access Region so that the master can perform raw
access to data and its corresponding ECC from the whole
physical space of the external memory. Whereas the ECC
corresponding to each block of data at the external memory
was transparent to the master when a request was made via the
Cache Access Region, the ECC corresponding to each block
of data is visible to the master when a request is made via the
Direct Access Region.

In some embodiments, during normal operation (e.g.,
when a master makes a request to read or write data at the
external memory), the master accesses the external memory
via the Cache Access Region and during operation that is
other than normal (e.g., subsequent to receiving a status of

US 9,058,290 B2

9

uncorrectable error of data requested via the Cache Access
Region), the master can access the external memory via the
Direct Access Region to see even the ECC. By performing
such a raw access to data via the Direct Access Region, the
accessed data can be analyzed and/or debugged, for example,
to correct any errors in the data. In some embodiments, data
can also be accessed via the Direct Access Region for reasons
other than debugging. For example, data can be accessed via
the Direct Access Region for testing purposes; a test program
can use the Direct Access Region to intentionally modify
ECC only or modify one particular word of data without
updating the ECC for the purpose of creating data corruption
for testing. Also, data can be accessed via the Direct Access
Region for initializing the memory (including the ECC loca-
tions) with known data.

For example, to access data via a particular region of the
address space, the master can send a request that includes a
logical address that is the base address of the desired region
plus the offset at which the data is sought. In a specific
example, assume that the external memory has address 0 to
511. Also, assume that the whole address space as seen by the
master is 0 to 9999. If the Direct Access Region started from
address 1000 (i.e., the Direct Access Region base address) of
the address space of the master, then the address region 1000
to 1511 can be defined as the Direct Access Region. The
master would use address (Direct Access Region base address
plus the offset) “1000+2 (=1002)” to access the external
memory at logical address 2 using the Direct Access method
(data is accessed at the physical address of 2 because no
remapping is done in the Direct Access Method). If the Cache
Access Region started from address 2000 (i.e., the Cache
Access Region base address) of the address space of the
master, then the address region 2000to 2511 can be defined as
the Cache Access Region. The master would use address
(Cache Access Region base address plus the offset) “2000+2
(=2002)” to access the external memory at logical address 2
using the Cache Access method.

For example, assume that the master requests to access data
at address 8. Referring to the example of external memory of
FIG. 4, if the master made this request via the Cache Access
Region (e.g., the request is for Cache Access Region base
address +offset of 8), then the logical offset 8 is remapped to
physical address 9 and the data at physical address 9 is
accessed. Otherwise, if the master made this request via the
Direct Access Region (e.g., the request is for Direct Access
Region base address +offset of 8), then the data at physical
address 8 (ECC) is returned because no remapping is per-
formed.

FIG. 6 is a flow diagram showing an embodiment of a
process of memory access. In some embodiments, process
600 can be implemented by a memory protection cache such
as memory protection cache 304 of system 300. In some
embodiments, process 600 is implemented for a request asso-
ciated with a read miss or a write miss at the cache of the
memory protection cache such that the memory needs to be
accessed. What is not shown in process 600 is a request
associated with a read hit or write hit at the cache for which
the memory would not need to be accessed because the
requested data could be directly read from/written to in the
cache without interaction with the memory.

At 602, a request associated with a read or write operation
is received, wherein the request includes a logical address
associated with the memory. For example, a master receives
aninstruction from a software application to access data at the
memory and then the master sends a request associated with
a read or write operation to the memory protection cache
based on the instruction. The request includes a logical

10

15

20

25

30

35

40

45

50

55

60

65

10

address associated with the location of the data that is desired
to be accessed. In various embodiments, the request is made
via the Cache Access Region (e.g., during this normal opera-
tion of memory access).

At 604, a physical address is generated based at least in part
on the logical address. For example, the physical address can
be generated by remapping the logical address with a map-
ping scheme (e.g., the remapping technique as illustrated in
formula (I) above). The purpose of remapping the logical
address to the physical address is to locate the data that is
identified by the logical address to the master but has shifted
in physical location at the memory due to the addition of the
ECC.

At 606, a block of data at the memory that includes data
associated with the physical address is determined. In various
embodiments, the memory protection cache only accesses
data from the memory in blocks of a predetermined size. The
data associated with the generated physical address (i.e., the
request) could be included with one or more blocks of data.
For example, if data associated with the request were
included within one block of data at the memory, then that
block of data is determined. But if the data associated with the
request were included within more than one block of data at
the memory, then those multiple blocks of data can be deter-
mined.

At 608, data at the determined block of data and a corre-
sponding set of ECC are accessed at the memory. In various
embodiments, a corresponding set of ECC is stored for each
block of data at the memory. When a block of data is accessed,
s0 is its corresponding set of ECC.

At 610, it is determined whether the accessed block of data
has an uncorrectable error. In various embodiments, the
accessed block of datarequested via the Cache Access Region
is checked for error. In the event that it is determined that the
block of data has no error (e.g., the data can be successfully
decoded) or it is determined that the block of data has cor-
rectable error (e.g., the data can be successfully decoded after
being corrected with the corresponding set of ECC), control
passes to 614. At 614, the completion of the request is based
on whether the request is associated with a read operation or
a write operation. An example of the completion of a request
associated with a read operation is shown in FIG. 7 and an
example ofthe completion of a request associated with a write
operation is shown in FIG. 8. In the event that it is determined
that the block of data has uncorrectable error (e.g., the data
cannot be successfully decoded even after the data was cor-
rected with the corresponding set of ECC), then control
passes to 612.

At 612, an indication of an uncorrectable error status is
sent. In some embodiments, the indication of the uncorrect-
able error status is sent to the master. In some embodiments,
in response to receiving this indication, the master takes fur-
ther action, such as the example illustrated in FIG. 12.

FIG. 7 is a flow diagram showing an embodiment of a
process for reading data from memory. In various embodi-
ments, process 700 continues at 614 of process 600. In some
embodiments, process 700 can be implemented at system
300. In some embodiments, process 700 can be performed by
a memory protection cache such as memory protection cache
304 of system 300.

At 702, the block of data accessed from the memory is
determined to have no error or error that is correctable with its
set of corresponding ECC.

At704, the accessed data is stored at a corresponding block
in the cache. In various embodiments, the cache of the
memory protection cache is enabled so that data can be stored
there. In various embodiments, the cache includes areas that

US 9,058,290 B2

11

mirror the arrangement of the blocks of data and, in some
embodiments their corresponding sets of ECC, at the
memory. So when a block of data is accessed from the
memory, it can be stored at a location (block) in the cache that
corresponds to the location (block) from where it was
accessed at the memory. In some embodiments, the accessed
data is stored at a location in cache based on a particular
replacement policy. In some embodiments, the accessed data
is stored at any available location in cache. In some embodi-
ments, the corresponding set of ECC that is accessed with the
data is also stored at the cache.

At 706, a portion of the accessed data associated with the
request is returned. In some embodiments, at least a portion of
the data included in a block of data is requested by a read
operation. Those portions of the accessed data stored at the
cache that are relevant to the read operation are returned to the
master that made the request. In various embodiments, the
requested data to be read is returned directly to the master
without requiring the master to wait to receive an interrupt
(e.g., from a DMA engine) and then subsequently read the
data from the local memory.

FIG. 8 is a flow diagram showing an embodiment of a
process for writing data to memory. In various embodiments,
process 800 continues at 614 of process 600. In some embodi-
ments, process 800 can be implemented at system 300. In
some embodiments, process 800 can be performed by a
memory protection cache such as memory protection cache
304 of system 300.

At 802, the block of data accessed from the memory is
determined to have no error or error that is correctable with its
set of corresponding ECC.

At 804, the accessed data is stored at a corresponding block
in the cache. In various embodiments, the cache of the
memory protection cache is enabled so that data can be stored
there. In various embodiments, the cache includes areas that
mirror the arrangement of the blocks of data, and in some
embodiments their corresponding sets of ECC, at the
memory. So when a block of data is accessed from the
memory, it can be stored at a location (block) in the cache that
corresponds to the location (block) from where it was
accessed at the memory. In some embodiments, the accessed
data is stored at a location in cache based on a particular
replacement policy. In some embodiments, the accessed data
is stored at any available location in cache. In some embodi-
ments, the corresponding set of ECC that is accessed with the
data is also stored at the cache.

At 806, the accessed data stored at the corresponding block
in the cache is updated based at least in part on the requested
data. In various embodiments, at least a portion of the data
included in a block of data is requested to be updated by the
write operation. Those portions of the accessed data stored at
the cache that are relevant to the write operation are updated
(e.g., rewritten/modified) with the new data of the write
operation.

At 808, the updated block of data at the cache is indicated
as dirty. In various embodiments, a block of data at the cache
that is marked as “dirty” will be eventually written back from
the cache to the external memory (whereas a block of data that
is marked as “clean” will not be written back from the cache
to the external memory). For example, a block of data can be
marked as “dirty” if a bit associated with that block of data is
changed to “1” (whereas a block is marked as “clean” if a bit
associated with that block of data indicates “0”). In some
embodiments, when a certain condition is met, blocks of data
that are marked as “dirty” at the cache are written back to their
corresponding locations (blocks) at the memory. One
example of a certain condition being met is when the cache is

25

40

45

12

full and/or there is a read miss or write miss at the cache such
that data needs to be evicted from the cache so more available
space can be made for new data that is requested.

FIG. 9 is a flow diagram of a process for performing evic-
tion at the cache. In some embodiments, process 900 can be
implemented at system 300. In some embodiments, process
900 can be performed by a memory protection cache such as
memory protection cache 304 of system 300.

At 902, a condition for eviction is met. In some embodi-
ments, there is one or more conditions (e.g., configured by a
system administrator) that, if at least one is met, eviction is
performed at the cache. For example, a condition for eviction
is when the cache is full and/or a read miss or write miss at the
cache occurs. Eviction entails that one or more blocks of data
stored at the cache are to be processed so that new data can be
stored at the cache.

At904, ablock of data at the cache is selected based at least
in part on a replacement policy. In some embodiments, if the
missing data of the write/read miss must be stored at a certain
block of data, then that block of data is chosen (e.g., and no
replacement policy needs to be used). In some embodiments,
if the missing data does not necessarily need to be stored at a
certain block, then a conventional replacement policy can be
used. For example, a replacement policy can be to choose a
least-recently-used block or a block that is selected by round
robin. In some embodiments, one or more blocks of data can
be selected at the cache for eviction at a time.

At 906, it is determined whether the selected block of data
is dirty. In the event that the selected block of data has not
been indicated/marked as “dirty” (i.e., it is marked as
“clean”), then control passes to 908 and the block of data is
invalidated so that it can be written over by newly requested
data. By invalidating a block of data, the block of data is
marked as being no longer in use so that the space can be filled
with new data. For example, a valid bit can be maintained per
block of data in cache and the valid bit is set to “1” if the space
is filled by new data and set to “0” if the space is no longer
used. In the event that the selected block of data has been
indicated/marked as “dirty”, then control passes to 910.

At 910, a corresponding location at the memory associated
with the selected block of data is determined. In some
embodiments, the corresponding location (e.g., a set of logi-
cal and/or physical addresses) at the memory associated with
the selected block of data is determined based on metadata
associated with the block of data. In some embodiments, the
corresponding location at the memory associated with the
selected block of data is determined based on the location at
the cache at which the block of data was stored (e.g., if it were
designed that each location at the cache corresponds to a
particular location at the memory).

At 912, a new set of ECC corresponding to the selected
block of data is generated. For example, a set of ECC can be
generated using a series of (exclusive-OR) operations using
different portions of the block of data and/or other input
information.

At 914, the data associated with the block of data and also
the new set of ECC are written back from the cache based at
least in part on the determined corresponding location at the
memory. In some embodiments, the selected block of data is
written to the determined corresponding location in memory
and the new set of ECC is also written at a location in memory
that is proximate to (e.g., next to) where the block of data is
written back to.

FIG. 10 shows an example in which a word of data at
logical address 8 was requested. In the example, each unique
logical and physical address identifies a word of data (e.g.,
comprising 32 bits of data). In the example, each block of data

US 9,058,290 B2

13

is defined to include eight words of data. In this example,
assume that a microprocessor requests to access data at logi-
cal address 8 via the Cache Access Region. Assume that the
requested data is not already stored at the cache (which is
enabled) of the memory protection cache (in the event of a
read miss or write miss), so the memory protection cache
needs to access the requested data from the memory. The
memory protection cache receives the request and because it
was made via the Cache Access Region, remaps the logical
address to a corresponding physical address. The memory
protection cache can use a mapping logic to map logical
address 8 to physical address 9. As shown in the example,
logical address 8 and physical address 9 points to the same
word of data. In this example, the memory protection cache
retrieves data in the minimum unit of a block of data and one
such block comprises eight words of data. The block of data
that includes the word of data at physical address 9 (i.e.,
logical address 8) is the set of data words that span the range
of physical addresses from 9 to 16. In the example, the set of
ECC corresponding to the data block located at physical
addresses 9 to 16 is located at physical address 17. So, the
memory protection cache can retrieve from the memory the
block of data at physical addresses 9 to 16 and its correspond-
ing set of ECC at physical address 17. The data retrieved from
physical addresses 9 to 16 is checked for error with the cor-
responding set of ECC that was retrieved from physical
address 17. If no error was detected or if correctable error was
detected and corrected with the ECC, then the accessed block
of data, and in some embodiments its corresponding set of
ECC, is stored at a corresponding location in the cache. If the
request were a read operation, then the portion of the data at
the cache that is relevant to the read request, the data at
physical address 9, is read from the cache and returned to the
microprocessor. Otherwise, if the request were a write opera-
tion, then the portion at the cache that is relevant to the write
operation, the data at physical address 9, is updated with data
associated with the write operation. The updated block of data
is marked as “dirty” so that it will be eventually written back
to the external memory at its corresponding location in
memory.

FIG. 11 shows an example in which words of data at logical
addresses 15 and 16 were requested. In the example, each
unique logical and physical address identifies a word of data
(e.g., comprising 32 bits of data). In the example, each block
of data is defined to include eight words of data. In this
example, assume that a microprocessor requests to access
data at logical addresses 15 and 16 via the Cache Access
Region. Assume that the requested data is not already stored
at the cache (which is enabled) of the memory protection
cache (in the event of a read miss), so the memory protection
cache needs to access the requested data from the memory.
The memory protection cache receives the request and
because it was made via the Cache Access Region, remaps the
logical addresses to corresponding physical addresses. The
memory protection cache can use a mapping logic to map
logical address 15 to physical address 16 and logical address
16 to physical address 18. As shown in the example, logical
address 15 and physical address 16 point to the same word of
data, as does logical address 16 and physical address 18. In
this example, the memory protection cache retrieves data in
the minimum unit of a block of data and one such block
comprises eight words of data. In this example, the requested
data straddles two blocks of data: the first block of data that
includes the word of data at physical address 16 (i.e., logical
address 15) is the set of data words that span the range of
physical addresses from 9 to 16 and the second block of data
that includes data at physical addresses 18 (i.e., logical

10

15

20

25

30

35

40

45

50

55

60

14

address 16) is the set of data words that span the range of 18
to 25. The set of ECC corresponding to the data block located
at physical addresses 9 to 16 is located at physical address 17
and the set of ECC corresponding to the data block located at
physical addresses 18 to 25 is located at physical address 26.
So, the memory protection cache can retrieve from the
memory the blocks of data at physical addresses 9 to 16 and
18 to 25 and their corresponding sets of ECC at physical
addresses 17 and 26, respectively. The data retrieved from
physical addresses 9 to 16 is checked for error with the cor-
responding set of ECC that was retrieved from physical
address 17 and the data from physical addresses 18 to 25 is
checked for error with the corresponding set of ECC from
physical address 26. If no error was detected or if correctable
error was detected and corrected with the ECC, then the
accessed blocks of data and their corresponding sets of ECC
are stored at corresponding locations in the cache. If the
request were a read operation, then the portions of the data at
the cache that is relevant to the read request, the data at
physical addresses 15 and 16, are read from the cache and
returned to the microprocessor. Otherwise, if the request were
a write operation, then the portions at the cache that are
relevant to the write operation, the data at physical addresses
15 and 16, are updated with data associated with the write
operation. Each updated block of data is marked as “dirty” so
that it will be eventually written back to the external memory
at its corresponding location in memory.

FIG. 12 is a flow diagram showing an example of a process
for handling an error from the memory protection cache. In
some embodiments, process 1200 is initiated at 612 of pro-
cess 600. In some embodiments, process 1200 can be imple-
mented at system 300. In some embodiments, process 1200
can be performed by master 302 of system 300.

At 1202, an error status is received. In some embodiments,
the error status is received from the memory protection cache.
In some embodiments, the error status is received from the
memory protection cache in response to determining that data
accessed at the memory via the Cache Access Region has
uncorrectable error. For the example, the error status can
include an address that is associated with the location of the
data that led to the error.

At 1204, a block of data associated with the error is deter-
mined. In some embodiments, the error address of the error
status is used to determine a block of data with which the error
is associated. For example, the block of data can be the block
of data that was accessed by the memory protection cache
during a previous access to the memory (via a Cache Access
Region) and this block of data was determined to have uncor-
rectable error. In some embodiments, a logical address (or a
set of logical addresses) of the block of data associated with
the error status is determined. In some embodiments, a physi-
cal address (or a set of physical addresses) is determined from
the logical address (or set of logical addresses).

At 1206, a read request associated with the determined
block of data associated with the error status is sent. In some
embodiments, the read request is sent to the memory protec-
tion cache to access the data at the memory. In some embodi-
ments, the read request includes the determined physical
address (or set of physical addresses) of the block of data at
memory. In some embodiments, the read request is sent via
the Direct Access Region. In some embodiments, because the
read request was sent via the Direct Access Region, the logi-
cal address (or set of logical addresses) is used as the physical
address (or set of physical addresses) instead of remapping
the logical address into a corresponding physical address.

At 1208, data and a corresponding set of ECC returned
based at least in part on the determined block of data associ-

US 9,058,290 B2

15

ated with error status are processed. In some embodiments,
because the request was made via the Direct Access Region,
the data at the determined block of data associated with the
error status is returned as well as the set of ECC correspond-
ing to that data (in contrast to a request made via the Cache
Access Region where the corresponding set of ECC is not
returned to the requestor). Furthermore, because the accessed
data was requested via the Direct Access Region, the data is
not cached or checked for error. For example, the returned
data and ECC can be processed to determine the location of
error and also the correct data.

At 1210, a write request associated with the processed data
for writing the processed data to memory is sent. In some
embodiments, the write request is sent to the memory protec-
tion cache via the Direct Access Region (e.g., to write the
corrected data back to memory). In some embodiments, the
write request includes a physical address (or a set of physical
addresses) associated with the block at the memory to which
the processed data is to be written.

FIG. 13 is a flow diagram showing an embodiment of a
process for handling an error. In some embodiments, process
1300 is initiated at 612 of process 600. In some embodiments,
process 1300 can be implemented at system 300. In some
embodiments, process 1300 can be performed by memory
protection cache 304 of system 300.

At 1302, an error status is sent. In some embodiments, the
error status is sent to the master. In some embodiments, the
error status is sent in response to determining that data
accessed at the memory via the Cache Access Region has
uncorrectable error. For the example, the error status can
include an address that is associated with the location of the
data that led to the error.

At 1304, aread request associated with a determined block
of data associated with the error status is received. In some
embodiments, the read request includes the determined
physical address (or set of physical addresses) of the block of
data at memory. In some embodiments, the read request is
sent via the Direct Access Region. In some embodiments,
because the read request was sent via the Direct Access
Region, the logical address (or set of logical addresses) is
used as the physical address (or set of physical addresses)
instead of remapping the logical address into a corresponding
physical address.

At 1306, data associated with the read request including
data associated with the determined block of data at the
memory and also a set of ECC corresponding to the block of
data are accessed.

At 1308, the data associated with the determined block of
data and the corresponding set of ECC are returned. In some
embodiments, because the request was made via the Direct
Access Region, the data at the determined block of data
associated with the error status is returned as well as the set of
ECC corresponding to that data (in contrast to a request made
via the Cache Access Region where the corresponding set of
ECC is not returned to the requestor).

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:
1. A system for accessing data at a memory, comprising:
a processor configured to:
receive a request associated with an operation, wherein
the request includes a logical address associated with
the memory;

20

30

35

40

45

50

55

60

65

16

determine a type of access associated with the request
based at least in part on the logical address;
generate a physical address based at least in part on (1)
the type of access and (2) the logical address, wherein
to generate the physical address based at least in part
on (1) the type of access and (2) the logical address
includes to:
in the even that the type of access comprises a first
type of access, generate the physical address based
at least in part on translating the logical address;
and
in the event that the type of access comprises a second
type of access, generate the physical address based
at leastin part on not translating the logical address;
determine a block of data at the memory that includes
data associated with the physical address; and
access data at the block of data and a corresponding set
of ECC from the memory based at least in part on the
type of access; and

the memory coupled to the processor and configured to

provide the processor with instructions.
2. The system of claim 1, wherein to access data at the
determined block of data and the corresponding set of ECC
from the memory based at least in part on the type of access
includes to:
in the event that the type of access comprises the first type
of access, determine whether the accessed data can be
decoded based at least in part on the corresponding set of
ECC; and

in the event that the type of access comprises the second
type of access, return the data associated with the deter-
mined block of data and the corresponding set of ECC.

3. The system of claim 2, wherein in the even that the type
of access comprises the first type of access and in the event
that the accessed data can be decoded, the processor is further
configured to store the accessed data at a corresponding
cache.

4. The system of claim 3, wherein in the event the operation
comprises a write operation, the processor is further config-
ured to:

update the accessed data stored at the corresponding cache

based at least in part on the request; and

indicate that the update block of data stored at the corre-

sponding cache is dirty.

5. The system of claim 4, wherein the processor is further
configured to:

generate a new set of ECC corresponding to the updated

block of data; and

write back data associated with the updated block of data

and also the corresponding new set of ECC to the
memory.

6. The system of claim 1, wherein a physical address of the
corresponding set of ECC is sequential to a physical address
associated with the block of data.

7. The system of claim 1, wherein a physical address of the
corresponding set of ECC is not sequential to a physical
address associated with the block of data.

8. The system of claim 1, wherein the block of data com-
prises a cache line.

9. The system of claim 1, wherein to determine the block of
data includes to determine a start physical address and an end
physical address associated with the block of data.

10. The system of claim 1, wherein to determine the block
of data includes to determine a range of physical addresses
associated with the block of data.

US 9,058,290 B2

17

11. A method for accessing data at a memory, comprising:

receiving a request associated with an operation, wherein
the request includes a logical address associated with the
memory;

determining a type of access associated with the request

based at least in part on the logical address;

generating a physical address based at least in part on (1)

the type of access and (2) the logical address, wherein
generating the physical address based at least in part on
(1) the type of access and (2) the logical address
includes:
in the event that the type of access comprises a first type
of access, generating the physical address based at
least in part on translating the logical address; and
in the event that the type of access comprises a second
type of access, generating the physical address based
at least in part on not translating the logical address;
determining a block of data at the memory that includes
data associated with the physical address; and
accessing data at the block of data and a corresponding set
of ECC from the memory based at least in part on the
type of access.
12. The method of claim 11, wherein accessing data at the
determined block of data and the corresponding set of ECC
from the memory based at least in part on the type of access
includes:
in the event that the type of access comprises the first type
of access, determining whether the accessed data can be
decoded based at least in part on the corresponding set of
ECC; and

in the event that the type of access comprises the second
type of access, returning the data associated with the
determined block of data and the corresponding set of
ECC.

13. The method of claim 12, wherein in the event that the
type of access comprises the first type of access and in the
event that the accessed data can be decoded, further compris-
ing storing the accessed data at a corresponding cache.

14. The method of claim 13, wherein in the event the
operation comprises a write operation, further comprising:

30

18

updating the accessed data stored at the corresponding
cache based at least in part on the request; and

indicating that the updated block of data stored at the
corresponding cache is dirty.

15. The method of claim 14, further comprising:

generating a new set of ECC corresponding to the updated

block of data; and

writing back data associated with the updated block of data

and also the corresponding new set of ECC to the
memory.

16. The method of claim 11, wherein the block of data
comprises a cache line.

17. A computer program product for accessing data at a
memory, the computer program product being embodied in a
non transitory computer readable storage medium and com-
prising computer instructions for:

receiving a request associated with an operation, wherein

the request includes a logical address associated with the
memory;

determining a type of access associated with the request

based at least in part on the logical address;

generating a physical address based at least in part on (1)

the type of access and (2) the logical address, wherein
generating the physical address based at least in part on
(1) the type of access and (2) the logical address
includes:
in the event that the type of access comprises a first type
of access, generating the physical address based at
least in part on translating the logical address; and
in the event that the type of access comprises a second
type of access, generating the physical address based
at least in part on not translating the logical address;
determining a block of data at the memory that includes
data associated with the physical address; and
accessing data at the block of data and a corresponding set
of ECC from the memory based at least in part on the
type of access.

